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NOMENCLATURE 

specific heat : 
F1(#), function of #, equation (20) : 
F&), function of S’,, equation (24): 
ratio, liquid to vapor density, p,./p,*; 
Jacob number (pC,AT/lp,); 
thermal conductivity : 
velocity factor, modified potential flow ; 
total system pressure : 
partial pressure, non condensible : 
partial pressure vapor : 
P&cl&t number (U,ZR/a); 
Prandtl number (&,/k); 
Nusselt number (h2R/k): 
heat flux [Btu/hf?] : 
heat flux, potential flow [Btuihft’] : 
radius of bubble : 
initial radius of bubble: 

final radius of bubble: 

specific gas constant: 
radial coordinate : 
saturation temperature corresponding to P* : 
bubble wall temperature : 
approach temperature, surrounding liquid : 
temperature difference, T* - T, : 
time. 

velocity of rise : 
thermal diffusivity : 
dimensionless radius, R/R,, : 
final dimensionless radius, R,/R, ; 

2, latent heat; 

P. density, continuous phase: 

p. density, condensate : 
p., density, vapor: 

T, dimensionless time, Fourier number (=at/Ri); 
2, dimensionless time for collapsing bubble (JaPe%). 

Subscripts 

f> final : 
0, initial : 
w, at the wall. 

Superscripts 

H, homogeneous distribution : 
p, parabolic distribution. 

INTRODUCTION 

WITTKE and Chao [l] and Isenberg and Sideman [2] pre- 
sented numerical solutions for unsteady state bubble 

collapse: the former for a single component (steam-water) 

system and the latter for a two component (pentane-water) 

system. These systems differ since the condensate in a single 
component bubble merges with the surrounding liquid, 

while the condensate in the two component system remains 

within the confines of the bubble walls. More recently, 

Sideman et al. [3] presented an approximate, quasi-steady 

state, analytical solution for bubble collapse in two- 

component, 3-phase systems. The solution is general, con- 

veniently reducing to a solution for a single component 

* Presently: Visiting Professor, Department of Chemical 
Engineering, University of Houston, Houston, Texas 77004. 
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system, and is in agreement with the experimental data Note that the Jacob number is defined here in terms of the 
for pentane-water, pentane-pentane and steam-water properties of the cooling fluid and the saturation temperature 
systems. T* corresponding to the pressure of the system p*. 

All past solutions are based on the assumption that the 
non-condensables are homogeneously distributed in the 
confined space of the condensing bubble. This assumption 
may be reasonable for a single phase bubble where a po- 
tential flow field is assumed and the internal circulation 
associated with the moving boundary may approach a 
completely mixeti vapor-gas condition. However, this is 
definitely not the case for the two component system where 
the tangential motion of the wall may be drastically hindered 
by the condensing film on the bubble’s wall. 

In the absence of non~ondensabl~ T, = T*, the wall 
temperature is identical with the saturation temperature, and 
8, = 1. Integration of equation (4) then yields 

It is the object of this communication to present a com- 
plete and general solution for bubble condensation, taking 
into account the concentration gradients inside the con- 
densing bubble. 

i?@ = : (7+@ (1 - /I’). (Sa) 

In the presence of non-condensables, T, # T*. The partial 
pressure of the inert gas increases as the bubble contracts, 
simultaneously reducing the partial pressure of the vapors, 
until, as T, -+ T, condensation stops. At this point fi = /II 

For expediency as well as for clarity, and with little loss 
of accuracy, the approximate quasi-steady state analytical 
solution will be presented here. To avoid confusion, and to 
account for the presence of inerts, the bubbles in the single 
and two-components systems are hereby denoted “single- 
phase” and “two-phase” bubbles, respectively. 

Integration of equation (4), accounting for the presence of 
non-conden~bles, requires explicit expressions relating 0, 
to the inerts concentration and the instantaneous radius of 
the bubble. However, the inerts concentration is clearly 
related to the final bubble diameter, BP Since the latter may 
be readily available experimentally, it is deemed advanta- 
geous to express 6, in terms of the instantaneous and final 
dimensionless radii. Obviously. the value of 8, as well as 

THEORETICAL 
p,. must depend on the distribution of the inerts within the 

For heat transfer controlled bubble collapse at relatively 
bubble. 

high (> 1000) P&let numbers the quasi-steady state 
(a) Homogeneous distribution ofnon-condensables 

assumption implies that the radial wall velocity is negligible 
For this case the final radius is related to y,, the initial 

as compared with the translatorv motion of the bubble. In 
mole fraction of the non-condensables in the bubble by [2] : 

other words, the temperature -field around the bubble 
attains a steady state instant~eously, for every radius of the 
bubble. The heat flux is then given by 

4 = 40 . m,1* (1) 

where qO, the average heat flux in a potential flow field, here 
related to the instantaneous radius R, is given by 

40 = 
k(T, - T,) 2RU, f 

RX+ ( > 
(2) 

a 

and K,, the velocity factor by which the potential flow solu- 
tion for flow around a sphere is “transformed” to yield the 
average heat flux, equivalent to that which a laminar flow 
field solution would have given, is given by [2,3], 

K, = 0.25 Pr- +. (3) 

Equating equation (1) with the average heat flux being 
removed from the collapsing bubble, i.e. - Lp,$, and defining 

where i? is the gas constant. The superscript H denotes the 
homogeneous case. The term l/G* is due to the accumula- 
tion of the condensate within the conlines of the two-phase 
bubble. For a single-phase bubble i/G* vanishes and in the 
absence of non-condensables y0 = 0 and pr = 0. 

In terms of pf: and /I, the dimensionless wall temperature 
is given by (2) : 

P3 - By’ fp_:*-::-=_ 
/I’ - l/G* 

(7) 
“. m 

where P, is the partial pressure of the vapor and P* is the 
total system pressure. Second indices w and co denote the 
partial pressures corresponding to T, and T,. respectively. 
Note that l/G* vanishes for a single phase bubble. 

Introducing equation (7) into (4) and integrating yields 

e = JaPe*s T, - Tm 8, =---- 
T* - T, 

P = to + r, 

where Q, is given by 

yields : x 

0 

f,= F 
0 

*@;I” - (l/G*)ln (I - B:?o(* + 8:)) 

Sf@. 3#’ (I + 8~fMB* - @f) * 
(9) 

d/I p=latt=O. (4) 
” 

z=- XB Iv’ For a single phase bubble K. = 1 and l/G* = 0. 
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(b) Non-homogeneous concentration distribution 
A parabolic concentration profile of the inerts inside the 

bubble is assumed : 

y = q) + A,r -t A2rZ (10) 

where y is the instantaneous spatial concentration and r is 

the radial coordinate. 

The boundary conditions are 

Y = Y, at r=O (11) 

+o at r-0 

Dg=0 at r=R (13) 

(12) 

Equations (11) and (12) imply that, within the relatively 

short condensation period, the concentration in the center 

of the bubble remains constant, at the initial concentration 

of the emerging, still uncondensed, bubble. Equation (12) is 

self evident due to symmetry. Equation (13) states that the 

inert gas remains within the confines of the bubble, with no 

loss due to gas diffusion into the surrounding liquid. 

Neglecting the volume occupied by the liquid in the two 

phase bubble (l/G* N 0@05) the conservation of the inerts 

is written as 

4 nR;y, = y(r) 4wZ dr. i! 
II 

(14) 

Note that since R = f(t). y is also a time dependent variable. 

Equation (10) becomes 

which reduces to y = y,, at r = 0. For r = R equation (15) 

reduces to 

Y w. a = Yo: p = 1 (lbal 

y,=y, [1 +;[i)l: 1 > B > B, (16b) 

Y,., =Y, E +;(y]]: p = p, (l(k) 

y,,, > y, > y,, consistent with physical reality. Note that 

/I,’ denotes the final (dimensionless) radius in the non- 

homogeneous case. 
The relationship between the initial concentration and 

final (dimensionless) radius is derived in a manner similar to 
that leading to equation (6) utilizing Dalton’s law and 

ClausiusClapeyron’s equation. Here, however, the sub- 
script w denotes a point value, namely ‘at the wall’ (and only 

at the wall). Thus, the ratio of the initial and final partial 
pressures of the inerts P,. near the wall is given by 

P,. w.0 aT*’ v 

P,. M’., f E.(T* - 7,) 
(17) 

Also, since the initial concentration is uniform throughout 
the bubble. 

.pr “‘,o __ Yl,=R,B=l 4‘0 

P,, w. f J./r-H. &q=#, ?= rw., 
(18) 

Introducing equations (16) and (17) into (18) and utilizing 

/I’; as given by equation (6) yields, 

where 

(20) 

Equation (19) is exact for a single-phase bubble. For a 

two-phase bubble, equation (19) will yield good results at 

the initial condensation stages where l/G* in equation (6) 
is negligible. This is particularly correct at large values of 

&/(T* - T,). 
The relationship presented in equation (7) between 0, and 

the partial pressures of the vapor (and gas) in the bubble 

holds for this case too. However, P,,, in equation (7) 

represents the homogeneous partial pressure in the drop 

corresponding to the homogeneous temperature TW In the 

non-homogeneous case P,, w represents the partial pressure 

of the vapor actually at the wall temperature, T, (point value). 

Similarily, P,: m which in equation (7) represents the homo- 

geneous partral pressure in the bubble at its final size /IT 

and temperature T,, must be replaced by P,,, w, ( which 

denotes the final partial pressure of the vapor at the wall, 

where and when T, = ?,. Thus, 

p __ Tw - 7, ~ PC, w - Pv, w, r 
w T* - 7, p* -p,,,,, 

(21) 

Introducing P,,, = P* - P,,,: P,,,, , = P* - P,,,, ,. and 

P,IP* = y yields 

Combining equations (16) and (22) yields 

W) 

(23) 

where 

FZ~Fz(P4)=1-38~3~1-38~ F:. (24) 

Note that equation (23) represents an exact solution of 
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equation (16) and (22) only for a single phase bubble. where 
l/G* = 0. However, equation (21) applies to the two-phase 
bubble as well and, by analogy to equation (7), the term 
t/G* is intr~u~d as the best approx~ation for the two- 
phase bubble. 

Introducing equation (23) into (4) and integrating yields 

P = F2 [z. + tp1 (25) 

or, in terms of /I and fiJ 

tp = F, (&) V,(B) + Qi (/~,~~~)~ (26) 

where Q, is calculatf*i by equation (91, with & = F,@ now 
replacing #. 

RESULTS AND CONCLUSIONS 
A plot of F, (@) and @ vs. @T is presented in Fig. 1. As 

can be seen from Fig. l(a) and equation (20), F, (#) is, with 
an error of less than 4 per cent, practically constant (u 1.18) 
for 1: < 0.4. Note that for the same y, & > 8:. since 
# I 1 and F, (by) > 1. 

It is interesting to elucidate the relationship between 
&,, equation (23) and e, equation (7). As seen in Fig. l(c) 
F, (~~) decreases with fi,. going from 1 for pr = 0 to @6 for 
jIr = 1. However, in practice ff$ < e and condensation 

stops faster for the non-homogeneous case. Clearly, the 
effect of & is overriding that of l/F,. 

For the same initial inerts content in the bubble. a con- 
centration gradient inside the bubble retards conden~tion 
more than when the inerts are uniformly distributed in the 
bubble. This is demonstrated in Figs. 2 and 3 where /I is 
plotted against the (dimensionless) time. For identical 
initial operating conditions, the instantaneous radius /I 
after any time interval will be lower for the homogeneous 
bubble than for the comparable bubble with a concentra- 
tion build-up at the wall. The effect of non-homogeneity is 
small in the initial condensation stages but increases as /I 
decreases. The larger the initial inert concentration (hence 
larger P,) the larger will be the effect of non-homogeneity. 
Conversely, for low initial y,, the correction for the concen- 
tration gradient is small and is significant only at the last 
stages of the condensation process. 

The derivation presented are exact for single phase bubbles 
where l/G* is identically zero. However, since l/G* which 
represents the volume occupied by the immiscible conden- 
sate within the confines of the two-phase bubble is quite 
small (z l/200), the solution for two-phase bubbles is quite 
accurate for large values of 8. The solution is therefore 
accurate at the initial condensation stages, where the volume 
occupied by the condensate is negligible. Obviously, the 

_ fbl 

O-8 - 

FIG. 1. (a) F,(/$‘) vs. /I: : (b) 8’f VS. # ; (4 Fz@~) VS. b$ 
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accuracy improves over the whole condensation process as verified [3], indicates one of the practical advantages in- 

fi,, or rather &/AT), increases. herent in utilizing 3-phase heat exchanges. 

Finally, compare the condensation rates of pentane in 

the single and two component systems. At identical Q the 
single-phase bubble in the potential flow field will collapse 

faster than the two-phase bubble in the modified, restricted, 

potential field. However, a comparison based on identical 

bubble radii and temperature driving force, shows that the 

condensation of a pentane bubble in water is about 50 per 

cent faster than in pentane. This conclusion, experimentally 
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